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Hysteresis in the pressure-dependent solid state phase transition Pr,012-PrgOl, is modeled using a 
thermodynamic formalism. The system is considered to be formed of a fixed number of domains, 
which are differentiated on the basis of size. The two cases of noninteracting and interacting domains 
are considered. The interacting domains model allows a better fit to experimental results. In each case. 
the model is applied to four different isothermal hysteresis curves for the Pr70,2-Pr90ih phase transi- 
tion. The kinetics of the phase transition are studied for the case of noninteracting domains. 

I. Introduction 

The phenomenon of hysteresis is found 
when a system follows one path in going 
from an initial state A to a final state B, and 
a different path when it undergoes the re- 
verse transition from B to A. (In this paper 
the word “transition” is used whether or 
not the transformation is accompanied by a 
compositional change.) This phenomenon 
has been observed in many different types 
of systems, including electric-current and 
magnetic hysteresis (I), hysteresis in the 
phase transitions of solids (2-4, and even 
hysteresis in gas-phase reactions (5) and bi- 
ological systems (6). 

The theoretical formalism which has 
been developed to explain hysteresis draws 
on the concept of thermodynamically meta- 
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stable states. In the normal course of phase 
transitions, the system is considered to be 
in a state defined by the lowest point on the 
free energy curve. (Here the free energy 
will be considered in statistical mechanical 
terms as a function of some intrinsic vari- 
able such as concentration.) Plots of re- 
duced free energy (free energy divided by 
Boltzmann’s constant and temperature) are 
shown in Fig. 1. At a low value of an exter- 
nal parameter, such as temperature or pres- 
sure, there is a single minimum in the re- 
duced free energy curve, which represents 
the equilibrium concentration for that sys- 
tem. As the value of the external parameter 
is increased, a second minimum may form. 
This new minimum will increase in depth 
relative to the original one as the external 
parameter is increased, until at some value 
they are equal in depth. The two minima in 
the reduced free energy curves then repre- 
sent two equilibrium states for the system, 
and the system should be able to undergo a 
phase transition. 

The concept of metastable states invoked 
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FIG. 1. Plots of reduced free energy, G*, against 
concentration. Points a and b on curve C represent the 
equilibrium transition values for the system, and 
points e on curve A and d on curve E represent the 
hysteresis transition values for phases B and A, re- 
spectively. 

for hysteresis postulates that the system 
does not undergo a transition at the point 
where the two states are in equilibrium. In- 
stead, the system remains in the original 
state (phase A) through increasing values of 
the external variable until the minimum de- 
fining the new metastable phase disappears 
completely. Then the system presents no 
resistance to the energetically favorable 
transition to the new phase. 

Although this approach is sufficient to 
describe the hysteresis of a system as a 
whole, there is evidence that systems that 
show hysteresis do not undergo the phase 
transitions all at once. Instead, domains or 
nuclei of the new phase, B, first appear in 
the original material, A (4-7). As the exter- 
nal parameter is changed further, the num- 
ber and size of these domains increases un- 
til the system is finally composed solely of 

B. The reverse transition begins as the 
change in the external parameter is re- 
versed, and domains of A appear in B. 

Two major approaches have been used to 
model these observations. In one approach, 
the “nucleation and growth” theory, do- 
mains of B are seen as nucleating out of a 
parent material A (7, 8). The size distribu- 
tion of domains of B is given as a function 
of the external parameter, and is also gov- 
erned by a parameter which gives the inter- 
action between the domains. The reverse 
transition follows a different path if differ- 
ent parameters are chosen for the interac- 
tion of domains of B in a parent material of 
A and for the interactions of domains of A 
in a parent material of B. 

A difficulty with this approach is that it 
does not deal adequately with partially 
completed phase transitions. If the external 
parameter is reversed before the phase 
transition is complete, the original path 
would be retraced. However, it is known 
that if the external parameter is reversed, a 
hysteresis loop (scanning loop) appears. 

The second approach, which was devel- 
oped by Everett (9), and later expanded by 
Enderby (IO), proposes that a system is di- 
vided into domains even before a phase 
transition begins. The number and size of 
these domains remains a constant. Each 
domain has an individual free energy, 
which depends on two or more intrinsic 
variables. As the external parameter 
changes, the domains will undergo phase 
transitions, each of which is determined by 
the free energy curve of the domain. The 
result is a series of domain phase transi- 
tions which yield an overall transition for 
the system. 

In this investigation, a thermodynamic 
approach is used to model the free energy 
of individual domains within a system. 
Each domain is presumed to undergo a sep- 
arate transition between the two phases, 
and each exhibits hysteresis in its phase 
transition. The model is applied to four iso- 
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thermal measurements of the pressure- 
dependent iota-zeta phase transition in 
praseodymium oxide (1 I): 

PrgOi6 i? BPr70,2 + $02 

In Section 11, the model is formulated for 
the case of noninteracting domains. The 
system is viewed one-dimensionally, where 
each domain is in direct contact with the 
external oxygen. The domains are of differ- 
ent widths, and are distinguished on the ba- 
sis of a concentration gradient which is pre- 
sumed to exist across the width of the 
domains (12). This concentration gradient 
affects the maxima and minima of the 
chemical potential, and consequently af- 
fects the pressures at which the domain un- 
dergoes its forward and reverse transitions. 

The kinetics of the phase transition is 
also studied in Section II, using a theoreti- 
cal treatment that is derived from the con- 
cepts of irreversible processes (13). The 
rate equation, based on Kikuchi’s path 
probability theory (14), assumes the rate of 
change of the concentration to depend lin- 
early on the distance of the system from 
equilibrium. Both first- and second-order 
approximations to the rate constant are cal- 
culated, and are compared with kinetic 
studies of the iota-zeta transition (11). 

In Section III the approach is modified in 
such a way that a form of nucleation and 
growth is also incorporated. The domains 
are now considered to be in a two-dimen- 
sional array; each a unit cell in width but 
variable in length. (This is in accordance 
with the electron microscope images of the 
domains (15).) Interactions between the do- 
mains are posed such that there is no net 
interaction between like domains, but that 
if a domain in phase A undergoes a transition 
to B, the interaction between it and a near- 
est-neighbor domain in A will allow the 
nearest-neighbor to undergo a transition to 
B more readily than it would have other- 
wise. In this way, the initial transition may 
be viewed as a “nucleation” of chase B in 

the original phase A, and additional aided 
transitions of successive nearest-neighbor 
domains may be seen as “growth” of the 
original “nucleus.” This treatment allows 
some unification of the two approaches that 
previously seemed quite different, the “nu- 
cleation and growth” concept and the the- 
ory of transitions of preexisting domains. 

II. A Theoretical Model for a Solid State 
Phase Transition Using Noninteracting 
Domains 

A. A Theoretical Model for Hysteresis in 
the Phase Transition 

Following the proposals of Everett (9) 
and Enderby (IO), the system is considered 
to be composed of a number of domains of 
various widths. The state of each domain 
depends on an extrinsic variable N,. The 
free energy G, of domain (Y depends on N,, 
and the total free energy of the system may 
be expressed as 

G = c G,(N,). (2.1) 

The N,‘s are clearly subject to the condi- 
tion 

c A’, = Nt, (2.2) 
<I 

where Nt is the total amount of N, (e.g., the 
total excess oxygen present). The condition 
that these domains should be in thermody- 
namic equilibrium is obtained by minimiz- 
ing G subject to the constraint 

aGa - 
dNCS A, (2.3) 

where A is a Lagrange multiplier. Note that 
this is identical to the constraint 

aG - A 
TE- ’ (2.4) 

To apply Eqs. (2.1)-(2.4) to rare earth 
oxides, G(N,) is formulated as GNn. the free 
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energy for a domain with NO excess oxygen Following Cahn and Hilliard, the free en- 
atoms. Using the regular solution theory ergy for the entire domain may be ex- 
(16), G, may initially be written as pressed by integrating the local free energy 

GN, = &No + $ + kgT [No In ($1 
over the volume of the domain, 

G = xJg,dV + xJK,(Vx)%W 

+ (N - No) In cyj]. (2.5) 

In Eq. (2.9, 50 is the enthalpy per excess 
atom, N the total number of sites available 
for excess atoms, and 5; the interaction en- 
ergy between nearest-neighbor excess at- 
oms. The enthalpy contribution for each 
excess atom is given in the first term, the 
interactive energy for a nearest-neighbor 
excess oxygen atom in the second term, 
and the entropy contribution for the ran- 
domly distributed atoms in the third term. 

The first term on the right-hand side is 
given in Eq. (2.5). The third term may be 
simplified by use of the divergence theo- 
rem, and by setting the resultant surface 
integral equal to zero. The second and third 
terms may then be combined to yield (12) 

The second term, which is due to the 
concentration gradient, may be evaluated 
by assuming that Vx may be approximated 
as the constant ratio Ax/w, where w is the 
width of a domain. Notice that 

To introduce the size-dependent differen- 
tiation between domains, a theory devel- 
oped by Cahn and Hilliard (12) for the in- 
terfacial free energy of a nonstoichiometric 
system is adapted to the system of do- 
mains. The local free energy, g, in a region 
with a concentration gradient may be ex- 
pressed as a function of the concentration, 
x, the gradient of the concentration, Vx, 
and derivatives of the gradient, Vx. It is 
assumed that the change in concentration is 
small with respect to the reciprocal of the 
intermolecular distance, 

g = g(x, ox, TX, . . .). (2.6) 

Expressing g as an expansion about the 

The total free energy expression for a do- 
main may now be written as 

G=,C,N,++ K + No 2 (x - x,)* 

+ xJK$7*x)dV. (2.9) 

G = Go + xJK(Vx)2dV. (2.10) 

K-K,-%. 

+ kBT [NO In c$) 

+ (N -No) In iyj], (2. I I) 

local free energy for an area without a con- 
centration gradient (go), we obtain where x, is the equilibrium concentration. 

Dividing Eq. (2.11) through by N yields the 
g = go + K](Vx)? + K2Px, (2.7) free energy per site for excess oxygen at- 

where 
oms, 

K = ! ‘*g dg 1 - and K2 = - 2 avx* dWx)’ 
(2.8) G = g = [OX + [ix* + KX(X - X,)'IW' 

, 
+ kBT[xlnx + (1 - x)ln(l - x)]. (2.12) 

and the first-order term has been dropped 
due to symmetry considerations (using the The chemical potential of the oxygen at- 
approximation of a cubic crystal). oms can be calculated from Eq. (2.12) as 
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- 4xX, + x;, 

+ ksT In & . c ! (2.13) 

At thermal equilibrium, 

PO = &JO? = Hpi2 + kBT In Po2L (2.14) 

where pug? represents the chemical potential 
of O2 in the gas phase, and w& represents 
the standard chemical potential of O2 in the 
gas phase. Combining Eq. (2.14) with Eq. 
(2.13), 

Pt;;Ko(T) = & exp 

[ 
259 + K(3xI - 4X& + x2)/w’ 

krJ’ 
J, (2.15) 

where 

fWl = exp i (2.16) 

B. Application of the Model to the 
Pr701T-Prg016 Phase Transition 

To demonstrate the behavior of Eq. 
(2.19, it is expressed in the reduced form 

p;;‘2 = x 
1 - .Y exp 

[-2x + K*(3x’ - 4xx, + x:)1/T”, (2.17) 

where 

PO2 *I’2 = P&)(T) 

P = - kBT/ei 

K” = - Klc$i~v’. (2.18) 

The plot of PG:/’ versus x is similar in 
form to plots of p versus x and PO1 versus x. 
The maxima and minima for the Pgy curve 
occur at the same values of x as the maxima 
and minima of the Po2 and 1 curves. 

The points on the pressure versus con- 
centration curve (Fig. 2) represent the min- 
ima (or maxima) for the free energy. Thus, 
a point ( Po2, x) represents a particular solu- 
tion of the free energy equation minimized 
with respect to concentration. In the region 
where there are two minima, there are three 
possible values of x for a given value of PO,. 
Only the largest and smallest values for x 
are physically realizable; the middle value 
corresponds to an instability in the free en- 
ergy curve (the maxima separating two 
minima). 

The maximum on the pressure versus 
concentration curve (Fig. 2) represents the 
highest value of pressure for which the sys- 
tem can remain in phase A. Similarly. the 
minimum on the curve represents the low- 
est possible value of pressure the system in 
phase B can hold before a transition to 
phase A is induced. 

Figure 2 represents the nature of the sys- 
tem without domain considerations. Figure 

4 

). 3 
X 

FIG. 2. Oxygen pressure (in Torr) against concentra- 
tion, calculated for the Pr701Z-Pr901h phase transition at 
550°C. Points u and h are the points where the phases 
A and B are in equilibrium with each other. The hys- 
teresis phase transitions occur at points r and .f: 
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FIG. 3. Calculated fit to the hysteresis curve at 
55O”C, without use of domains. The broken lines rep- 
resent the experimental results. 

3 illustrates the calculated fit to the hystere- 
sis curve at 550°C without use of domains. 
The poor fit achieved with the bulk ap- 
proach emphasizes the need for a domain 
approach such as adopted here. 

To incorporate the effect of domains, the 
two parameters K* and X, have been intro- 
duced. K* is the basis for distinguishing the 
chemical potential of domains of different 
lengths, and hence for providing different 
PO* versus concentration curves. Recall 
that K* = -K/(eiW2), so that K” is propor- 
tional to K, which is related to the depen- 
dence of the local free energy of a domain 
on the concentration of excess oxygen at- 
oms (Eqs. (2.9) and (2.10)). Further, K is 
inversely proportional to Ei (the interaction 
energy between excess oxygen atoms) and 
to w2. Overall, it is the dependence of K* on 
w2 which is most significant. Since K* is 
inversely proportional to the square of the 
width of a domain, it is clear that when the 
system as a whole is considered to be one 
very large domain, w2 is very large and the 
contribution of terms involving K* is negli- 

gible. This corresponds to the bulk hystere- 
sis case. For small values of w, the influ- 
ence of K* on the chemical potential is 
quite noticeable. As the values used for K* 
are negative, the influence of the K* terms 
is to lower the maxima and raise the min- 
ima. This means that the smallest domains 
(with the largest magnitude of K*) will have 
the lowest maxima, and hence be the first to 
undergo transition to the new phase. They 
will be followed by transitions of domains 
of increasing size as the pressure is raised. 
Similarly, the smallest domains will also 
have the highest minima and will be the first 
to undergo reverse transitions to phase A. 
These effects are illustrated in Fig. 4. 

To fit the experimental hysteresis curves 
with calculated ones, we chose, for each 
transition, a set of 10 values of K* (corre- 
sponding to choosing 10 different widths of 
domains). We used equal volumes of do- 
mains for each value of K*, so that the re- 
sulting fit was made with what appeared to 
be a set of steps, each of the same length, 
but at different heights from each other 
(Figs. 7-10). There was no attempt to ap- 

I I / I 
1.73 1.75 I 77 

O/Pr 

FIG. 4. Effect of various values of K* on pressure 
versus concentration curves at 550°C. 
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portion amounts of different domains in a 
manner that would more closely approxi- 
mate their real distribution, as this was a 
task more appropriate to the case of inter- 
acting domains. Here, we simply set out to 
examine more closely the effect of using a 
set of domains of different values of K* 
(corresponding to different domain widths) 
to model the transition. (In the next sec- 
tion, the distribution of domain sizes is 
specified by a distribution function.) 

The second parameter mentioned above, 
X e, is a “system” parameter, and is the 
same for all domains in a given phase. The 
physical meaning of xe is the equilibrium 
concentration, and as such there are two 
values used for x,; one for phase A and an- 
other for phase B. One way to choose the x, 
values would be to find the concentration 
values corresponding to points a and h on 
Fig. 2, which are the points at which equi- 
librium transitions would take place. A sim- 
pler approach is to choose the concentra- 
tion values labeled c and d on Fig. 2, where 
c is at a pressure equal to the minimum on 
the van der Waals curve, and d is at a pres- 
sure equal to the maximum on the curve. 
Thus, for the forward transition, ,yc is the 
point corresponding to point c on the pres- 
sure/concentration curve for the appropri- 
ate temperature. For the reverse transition, 
x, is chosen as the concentration corre- 

36 
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FIG. 5. Best fit values and least-square fit for r” 
versus IOVT (K- I). 
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FIG. 6. Best fit values and least-square for In k’,,(7’) 
versus 1OW) (K I). 

sponding to point d on the same curve. The 
two approaches yield very similar values 
for x,, and the second approach has the ad- 
vantage that in the transition region, the ab- 
solute value of the difference x - X, is al- 
ways increasing as the transition proceeds. 

For each of the four experimental curves 
worked with, we found values for P and 
Z&(T) that would give the best fit of the cal- 
culated curve to the experimental one. (In 
comparing the fits of the endpoints of the 
calculated curves with the experimental 
ones, we are referring in each case to points 
on the lower left and upper right of each 
curve.) It was, of course, quite possible to 
find values for the pairs of parameters T* 
and Ko(T) which resulted in exact matches 
to the endpoints in each of Figs. 7-10. How- 
ever, this would have resulted in using un- 
related values of parameters. The relation- 
ship between In K*(T) and l/T is linear (Eq. 
(2.16)). The relationship between T* and 7 
is linear in terms of T, but there is also an 
inverse dependence of T* on e, (Eq. (2.18)). 
Let us assume that E, varies linearly with T. 
that is: -&i/LB = (b + T)/a. TX may then 
be approximated as a first-order function of 
l/T, 

T" = a(1 - h/T). (2.19) 

Employing a least-square fit of those values 
which gave best fits to the experimental 
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data, the values for the parameters were 
found to be 1.579 for a and 650.6 for 6. 

The relationship between In K,,(T) and li 
T should also be linear, as indicated by Eq. 
(2.16). Using the values of J&,(T) that gave 
best fits to the experimental data at T = 550 
and 57O”C, extrapolated values were cho- 
sen for &(T) at T = 540 and 535°C. This 
approach gave better overall results than a 
least-square fit of all best fit values for 
K”(T). It may also be worthy of note that 
the T* values for T = 550 and 570°C were 
much closer to the least-square values of p 
than for T = 540 and 535°C. This indicates 
that there are either some subtle irregulari- 
ties in the data for the four isothermal ex- 
perimental runs, or that the linear approxi- 
mations for r” and Ko(T) are insufficient to 
completely describe the system. Plots of 
the best fit values and the least-square val- 
ues of r” and In Ko(T) versus l/T are shown 
in Figs. 5 and 6. 

Once r”, K”(T), and X, values have been 
determined for a given experimental curve, 
the distribution of domain sizes had to be 
chosen to make the best possible fit to the 
given experimental data. In making this 
choice, the distribution of domain sizes is 
assumed to be the same for both the for- 
ward and reverse transitions (9, f0). Since 
it is conceivable that the K* value for a do- 
main undergoing a transition in the forward 
direction could be different from the K* 
value for the same domain undergoing the 
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FIG. 7. Calculated fit to the hysteresis curve at 
535”C, using 10 sets of noninteracting domains. -, 
calculated fit; ---, experimental. 

173 
O/Pr 

FIG. 8. Calculated lit to the hysteresis curve at 
54O”C, using 10 sets of noninteracting domains. -. 
calculated fit; ---, experimental. 

reverse transition, the difference in poten- 
tial K* values was allowed for by introduc- 
ing a final parameter, C, such that K” 
(forward transition) = CK* (reverse 
transition), where C is a constant. The 
number of domains of each size were cho- 
sen so that the slope of the theoretical fit 
was as close as possible to the experimental 
curve. Figures 7 to 10 show the theoreti- 
cal fits to the experimental data. Table I 
summarizes the values chosen for TX, 
Ko(T), x,, and C. Table II lists the values of 
K* used for each calculated fit, as well as 
the volume of domains of each size used. It 
should be noted that from the K* and LJi 
values, KIw2 can be determined. 

r 

1.73 175 177 
O/Pr 

FIG. 9. Calculated fit to the hysteresis curve at 
55o”C, using IO sets of noninteracting domains. -, 
calculated fit; ---, experimental. 
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81 Ml TABLE II 

V~LUMEAND K* FOR NONINTERACTING DOMAINS 
FOR HYSTERESIS FIT 

535°C 540°C 

-K* V -K* V 

0.01 3 0.01 6 
0.1 4 0.1 7 
0.2 6 0.2 7 
0.4 7 0.4 7 
0.6 7 0.6 7 
0.8 7 0.8 7 
1.2 7 I.0 7 

171 173 175 177 1.6 7 1.2 6 
O/Pr 1.8 7 I.6 6 

FIG. 10. Calculated fit to the hysteresis 2.2 6 2.0 5 curve at 

57O”C, using 10 sets of noninteracting domains. -, 
calculated fit: ---, experimental. 

550°C 570°C 

-p v -K” v 

0.01 4 0.01 6 
0.1 6 0.1 6 
0.2 6 0.2 6 
0.4 7 0.3 6 
0.6 7 0.4 6 
0.8 7 0.5 6 
1.0 6 0.6 6 
1.2 6 0.8 6 
1.4 5 1.0 5 
2.0 5 1.2 5 

C. A Theoretical Model for the Kinetics 
of the Phuse Transition 

The kinetics of the solid state phase tran- 
sition may be treated by using the free en- 
ergy expression obtained in the hysteresis 
treatment. According to the theory of irre- 
versible thermodynamics, for a system in a 
state not far from equilibrium the rate of 
change of the order parameter, ai can be 
calculated from the free energy by (13) 

where qij represents the kinetic coefficients 
and ?? represents the molar free energy. 
This implies that the driving force for the 
change of the order parameter ai is aG/Ja,j. 
In this case, the order parameter is identi- 
fied as the mole fraction of oxygen atoms, 
x. This yields 

ax ac 
x=qj-p (2.21) 

If G is obtained from the hysteresis treat- 
ment of the previous section, then 

(2.20) 
C = [‘X + [ix’ + $ (X - X,)* 

+ kBT[xln x + (1 - x)ln(l - x)], (2.22) 
TABLE I 

PARAMETERVALUES FORCALCULATED HYSTERESIS 
where 5’ = 50 - (+)po*. 

CURVES Substituting Eq. (2.22) into Eq. (2.21) 
yields 

Temperature (“0 
dX 

Item 535 540 550 570 - = q 
at 

5’ + 2[iX + $ (X - X,)(3X - X,) 

T* (best fit) 
T* (least square) 

Ko(7-l (best fit1 
K,,(T) (least square) 

“e, 

0.301 0.325 0.330 0.360 
0.3078 0.3156 0.3310 0.3606 . (2.23) 
0.04380 0.04365 0.03893 0.02397 
0.04837 0.04495 0.03893 
O.OMI 0.0688 0.0791 i:yi::” Notice that in thermal equilibrium, the fol- 

&? 0.9580 0.9523 0.9396 0.9103 
C 1 I 2 * 

lowing relation may be derived from Eqs. 
- (2.13) and (2.14), 
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K 
5' + 25iXO + 7 (X0 - -4(3X0 - Xe) 

= 0. (2.24) 

From Eqs. (2.23) and (2.24), one can obtain 

dAx 
dt = dXiAx 

+ kBTln(l + Ax/xo)l( 1 - Ax/(1 - x0) 

+ 5 Ax(3A.x + 6x0 - 4x,)], (2.25) 

where Ax = x - x0. Here, x0 refers to the 
equilibrium concentration x for a given 
pressure. Expanding the right-hand side of 
Eq. (2.25) in a power series of x yields the 
first-order approximation 

where 

kl = -4 [?si + xo(:~xo~ 

+ 5 (6x0 - 4x,) . 1 (2.27) 

Further expansion yields the second-order 
approximation 

dAx 
- = -k,Ax = -(k, + k&)Ax, (2.28) dt 

where 

(x0 - 0.5)kBT 
.&I - x(J2 1 . 

(2.29) 

D. Application of the Kinetics Model to 
the Pr7011PrgO16 Phase Transition 

In this section, the previously derived 
theoretical model for the kinetics of the 
phase transition are applied to data taken 
by Inaba et al. (II). 

From Eqs. (2.27) and (2.28) one can see 
that the rate constant k, depends on x0, the 
equilibrium oxygen atom concentration, 
which in turn depends on the O2 pressure 

Po2 as discussed in the previous section. 
Expressing Eq. (2.27) in reduced variables 
yields 

2 k;=-k,=--+ 1 

&J r* x0(1-x0) - 

+ g (6x0 - 4x,), (2.30) 

where K* represents an average value of 
K* since the kinetic measurements involve 
the system as a whole and not individual 
domains. 

Equation (2.29) becomes 

k&&z 3 K* + (x0 - 0.5) 
qkBT r” x$1 - x0)?' 

(2.31) 

and in reduced variables, Eq. (2.28) be- 
comes 

dAx -= 
dt’ - k:Ax 

= -(k; + k$Ax)Ax, t’ = -qkBTt. (2.32) 

In Fig. 11, the comparison of both first- 
and second-order theoretical results with 
the experimental results for the oxygen 
pressure dependence k, is shown. It can be 
seen from this figure that for a given tem- 
perature k, can vanish at a particular oxy- 
gen pressure. For the second-order calcula- 

FIG. 11. Calculated fit to the experimental rate con- 
stants, k,, obtained by Inaba et ul. (II), (---) first-order 
approximation; (-) second-order approximation, 
which is an excellent fit to the experimental data (i.e., 
this curve also represents the experimental curve). 
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tions, it was necessary to solve iteratively 
for the Ax that yielded the best fit of Eq. 
(2.32) to the experimental results. 

The coefficient q has also been deter- 
mined, and has been found to be a function 
of temperature. Each isothermal study 
yields one value of q. The four q values 
obtained from the experimental work of In- 
aba et al. (1 I) were fit by an equation of the 
Arrhenius form 

9 = A exp(-a/T) (2.33) 

where u was found to be 3.58 X IO4 Km’, 
and A was 1.15 x IO” secci. The values for 
q(T) and E* are summarized in Table III. 

The theoretical fit to the experimental ki- 
netic data of Inaba et al. was found to be 
quite good for the second-order approxima- 
tion for k,. While the constant K* was cho- 
sen in each case to cause the PO, intercept 
of the theoretical curve of k, versus PO1 to 
coincide with the experimental one, one 
can note that it is similar in both sign and 
magnitude to the values of K* chosen for 
the thermodynamic fits. The PO? intercept 
for the oxidation reaction represents the 
minimum Paz that causes the reaction to 
take place; this can be seen by minimizing 
PO? with respect to x using Eq. (2.15). 

III. A Theoretical Model for a Solid State 
Phase Transition Using Interacting 
Domains 

In approaching a study of a system with 
interacting domains, it is necessary to con- 

TABLE 111 

VAI.UES FOR KINETICS PARAMETERS 

7 
(“C) -4( TN” K* 

PO&intercept) 
(Tort? 

535 0.642 x 10mh I .ss72 1.50 
540 0.830 x IO h 1.3892 2.00 
S50 1.432 x 10~” 1.1147 3.09 
570 4.022 x IOmh 0.7051 7.10 

sider the nature of domain interactions 
( 17). The interaction energy proposed here 
is based on the idea of an interfacial free 
energy between two domains of unlike 
composition. The local free energy for an 
area in the inter-facial region is viewed as a 
function of the local concentration of oxy- 
gen atoms, the concentration gradient, and 
the derivatives of the gradient. The concen- 
tration gradient is taken across the width of 
the domain interface. The free energy per 
excess atom, g, may be written as a Taylor 
expansion about go, the free energy per ex- 
cess atom in an area of uniform concentra- 
tion, in a manner similar to that used in the 
previous section. Integrating g over the in- 
terfacial region, we obtain (18) 

G = GO(X) + Grit(x) (3.1) 

where Go(x) is simply the free energy ex- 
pression for a domain, as derived in Section 
II. Gint, the interfacial free energy, is com- 
posed of two terms 

+ $ (xi - 2sg, + xi, (3.2) 

where xl is the concentration in the domain 
being considered and x2, the concentration 
in its nearest-neighbor. C and D are con- 
stants depending on the size of the domain. 

The expression for the interfacial free en- 
ergy is symmetric; that is, the same results 
are obtained if .rI and X~ are interchanged. 
This agrees with the expectation that an in- 
terfacial region will have the same free en- 
ergy whether the integration is taken from 
the left-to-right or right-to-left sides of the 
region. Further, if two nearest-neighbor do- 
mains have the same excess atom concen- 
tration, the interfacial free energy is zero. 
In the case where the interfacial free energy 
is not zero, half the free energy is assigned 
to one domain, and half to its nearest-neigh- 
bor. 

Taking the derivative of Eq. (3.2) with 
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respect to xl yields the interfacial term of 
the chemical potential for a domain, 

JGint 
l-&t = - = c(3X: - 2X,X2 - x:, 

axI 
+ D(x, - x2). (3.3) 

This expression is not symmetrical with 
respect to xl and x2, which is as expected. 
For a domain with a low concentration X, 
pint should be negative, indicating that the 
excess atoms have a lower escaping ten- 
dency. For a domain with a high concentra- 
tion of excess atoms, pint should be posi- 
tive, reflecting an increased escaping 
tendency for those atoms. 

The effect of the interfacial chemical po- 
tential on the pressure versus concentration 
curve may be seen by viewing the total 
chemical potential for a domain as the sum 
of the chemical potential for a domain as 
calculated in Section II and two interfacial 
chemical potential terms, one each for the 
right- and left-hand side interactions: 

p = PO + /-dRHS) + pint(LHS). (3.4) 

As before, the chemical potential for a do- 
main is set equal to half the chemical poten- 
tial for the external oxygen, 

;po2 = 2E.L; 2 + IkaTln PO? 

= /J-O + pint(RHS) + /-dLHS). (3.5) 

The equation is now expressed in terms of 
Pop 

Po,K;U’> = =P 
2po - x0 

kBT I 

+-dRHS) 1 i 2~int(LHS) exp kJ ev kBT 1 . (3.6) 

Let exp(2p.inJkBT) = Ei. A domain in 
phase A, with a low value for x, will have 
pint less than zero, and hence Ei less than 
one. The effect of a nearest-neighbor in B 
on a domain in A will be to reduce the value 
of PQ for a given value of X, because the 
entire curve will be multiplied by a number 
less than one (EJ. Thus, the domain will 

undergo a transition to phase B at a lower 
pressure than it would if it had no nearest- 
neighbor in B, because the maximum in its 
pressure versus concentration curve (the 
pressure at which it undergoes transition) 
will have been lowered. 

The effect of a nearest-neighbor in A on a 
domain in B will be to cause it to undergo a 
transition at a slightly higher pressure than 
it otherwise would have, because the pres- 
sure versus concentration curve will have 
been multiplied by a value for Ei greater 
than one. 

Thus, the overall effect of the interac- 
tions may be summarized as follows: If the 
pressure is being slowly increased, a do- 
main in A will undergo transition at a 
slightly lower pressure than it normally 
would if it has a nearest-neighbor in B. If it 
has two nearest-neighbors in phase B, it 
will undergo the transition at a still lower 
pressure. This will appear to have the effect 
of having domains “grow,” that is, the 
nearest-neighbors of a domain that has un- 
dergone a transition are more likely to un- 
dergo transition than domains that do not 
have a nearest-neighbor in B. A similar ef- 
fect will be observed if the pressure is 
slowly decreased from a value at which all 
or most of the domains are in B; that is, 
those domains that have nearest-neighbors 
in A will undergo transitions slightly before 
those that do not have nearest-neighbors in 
A. 

The theoretical results (18) can be ap- 
plied to the solid iota-zeta phase transition 
of praseodymium oxide. The praseodym- 
ium oxide system is considered to be 
composed of a number of domains of vari- 
ous lengths, but each having the width and 
height of one unit cell. Two arrangements 
for the domains are considered; a one-di- 
mensional array and a two-dimensional 
(square) array. The numbers of different 
lengths of domains were chosen to fit the 
experimental data, and were invariant for 
all calculations. 
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The different lengths of domains allowed 
different concentration gradients to be set 
up in the domains. These concentration 
gradients were presumed to terminate in a 
defect or to be caused by various diffusion 
gradients. It was presumed that the length 
of a domain was invariant during the transi- 
tion to the high oxygen concentration phase 
B and the reverse transition to the low-con- 
centration phase A (hereafter referred to as 
forward and reverse transitions). It was 
also presumed that the material behind the 
domain (continuing down the length of the 
column that the domain originated) would 
rapidly undergo transition so as to be in the 
same phase as the domain at the head of the 
column. This is in accord with the results of 
high-resolution transmission electron mi- 
croscopy images of the phase transition, 
which show domains nucleating or growing 
slowly across the face of the system ex- 
posed to the external oxygen, but growing 
rapidly in length once begun (15). Although 
the system studied via HRTEM is not un- 
der the same conditions used during the 
phase transition studied here, the physical 
structure of the praseodymium oxide sys- 
tem does not make such an assumption un- 
reasonable. The result of this assumption is 
that the volume of the system in a phase is 
proportional to the number of domains in 
that phase. For both the one-dimensional 
and two-dimensional models, an exponen- 
tial function was used to apportion the 
numbers of domains of various sizes. In 

TABLE IV 

PARAMETERS USED IN APPLICATION OF 

INTERACTING DOMAIN MODEL TO THE IOTA-ZETA 
PHASE TRANSITION 

Parameters relating to theoretical treatment 

TK) 535 540 550 570 
F 0.3360 0.3394 0.3461 0.3590 
fGi n 0.04899 0.04477 0.03748 0.02660 
-xc I 0.0344 0.0339 0.0397 0.0536 
&I 0.9701 0.9695 0.9659 0.9599 

LL-1 
1.72 1.74 1.76 

O/Pr 

FIG. 12. Calculated fit (-) to the experimental hys- 
teresis curve t---J for the Pr70,2-Pr90,b phase transi- 
tion. For this figure, the temperature is 535°C. and the 
parameters used to achieve the fit were r” = 0.3360 
and K,(T) = 0.04899. 

this manner, the number of very small do- 
mains is much larger than the number of 
very large domains, as would seem physi- 
cally reasonable. This approach yields a 
reasonably good match with the experimen- 
tal data, especially at the end of the forward 
transition (when only the very large do- 
mains are completing their transition to the 
new phase). 

Values for r”, K"(T), xe, and K" were 
redetermined for the application of the in- 
teracting domain model to the iota-zeta 
praseodymium oxide phase transition, and 
are summarized in Table IV. T* and Kc)(T) 
were found by linearizing the best fits to the 
experimental data for T = 535, 550. and 
570°C. It was judged that the data for T = 
540°C were most deviating in attempts to 
use a linear fit of T* and In K"(T) to l/T. The 
values for x, were chosen to give the best 
fits to the experimental data, as application 
of the rule of equal area gave values of .r, 
that yielded very poor fits. K was kept at 
-40 for all forward transitions, and at ap- 
proximately - 10 for the reverse transi- 
tions. If larger magnitudes of K were used 
for the reverse transition, the minima, in- 
stead of steadily increasing with decreased 
length of domains, would double-back and 
start to decrease. The overall result, how- 
ever, is that the fit of the reverse hysteresis 
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curve to the experimental is not as good as 
the fit of the forward hysteresis curve. 

Two similar programs were used to 
model the forward and reverse phase tran- 
sitions under the assumptions of a one-di- 
mensional and a two-dimensional array of 
domains, respectively. 

Figures 12-15 show the fits to the four 
isothermal systems considered for two-di- 
mensional domain array models. The 
results for the one-dimensional array 
models are very similar and thus are not 
shown. The programs were run on a 
Hewlett-Packard 3000 Series II, and the 
plots in Figs. 12-15 were drawn via a sub- 
routine on a Zeta Plotter 100 Series. 

It may be noted that the fits to the experi- 
mental data obtained here are much better 
than those of Section II. This is in part due 
to the fact that under the model considered 
in Section II, the pressure at which a do- 
main underwent the forward transition (Pr) 
had to be greater than or equal to the pres- 
sure at which it underwent the reverse tran- 
sition (Pz). Otherwise, if Pz > PI, the do- 
main, upon undergoing transition, would 
immediately become unstable in the new 
phase and promptly revert back to the origi- 
nal phase A. Thus, for the largest domain 
under consideration, the value for K* had 

.---L .- 
1.72 1.74 1.76 

O/Pr 

FIG. 14. Calculated fit (-) to the experimental hys- 
teresis curve (---) for the Pr7012-Pr90jh phase transi- 
tion. For this figure, the temperature is 55O”C, and the 
parameters used were p = 0.3461 and K,(T) = 
0.03748. 

to be such that PI > Pz, which affected the 
shape of the curve. 

When a domain undergoes a transition, 
the new phase affects not only the domain 
but also the entire length of the column af- 
ter it. It is assumed that the concentration 
gradient establishing the new domain in 
phase B does not come into existence until 
the pressure is first reduced slightly. 

When the two-dimensional approach is 
used, the 603 domains comprising the 
model system were viewed as approxi- 

I’ 
1.72 1.74 1.76 

OlPr 

FIG. 13. Calculated fit (-) to the experimental hys- 
teresis curve (---) for the Pr,0,2-Pr901n phase transi- 
tion. For this figure, the temperature is 54O”C, and the 
parameters used were r$ = 0.3394 and K,(T) = 
0.04477. 

FIG. 15. Calculated fit (--) to the experimental hys- 
teresis curve (---). For this figure, T = 57O”C, T* = 
0.3590, and K&T) = 0.02660. 



HYSTERESIS AND KINETICS IN A SOLID STATE REACTION 343 

mately a 25 X 24 rectangular array with 
1206 bonds shared between nearest-neigh- 
bors (the bonds to “imaginary” nearest- 
neighbors are included in the array, as the 
program does not make any attempt to re- 
strict the bonds that can be formed due to 
geography). 

From Figs. 7-10 one can see that the in- 
troduction of independent domains does 
improve the fit between theory and experi- 
ment (cf. also Fig. 3) but the agreement is 
still not satisfactory. The introduction of in- 
teraction between domains (Figs. 12-15) is 
clearly important in treating the hysteresis 
of phase transitions in solids. 

In concluding this paper, it should be 
noted that a general formulation of the ki- 
netics of solid state phase transitions is not 
available. In this paper we attempt, in an ad 
hoc manner, to show that for systems that 
exhibit hysteresis in phase transitions (at 
least for Pr-i0,2-Pr90,h) one can determine 
the kinetics of the corresponding phase 
transition from the free energies. 
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